Multilinear Singular Value Decomposition for Millimeter Wave Channel Parameter Estimation
نویسندگان
چکیده
منابع مشابه
A Multilinear Singular Value Decomposition
We discuss a multilinear generalization of the singular value decomposition. There is a strong analogy between several properties of the matrix and the higher-order tensor decomposition; uniqueness, link with the matrix eigenvalue decomposition, first-order perturbation effects, etc., are analyzed. We investigate how tensor symmetries affect the decomposition and propose a multilinear generaliz...
متن کاملMultilinear Singular Value Decomposition for Structured Tensors
The Higher-Order SVD (HOSVD) is a generalization of the Singular Value Decomposition (SVD) to higher-order tensors (i.e. arrays with more than two indices) and plays an important role in various domains. Unfortunately, this decomposition is computationally demanding. Indeed, the HOSVD of a third-order tensor involves the computation of the SVD of three matrices, which are referred to as "modes"...
متن کاملOFDM channel estimation by singular value decomposition
A new approach to low-complexity channel estimation in orthogonal-frequency division multiplexing (OFDM) systems is proposed. A lowrank approximation is applied to a linear minimum mean-squared error (LMMSE) estimator that uses the frequency correlation of the channel. By using the singular-value decomposition (SVD) an optimal low-rank estimator is derived, where performance is essentially pres...
متن کاملOn the truncated multilinear singular value decomposition
In this report, we investigate the truncated multilinear singular value decomposition (MLSVD), proposed in De Lathauwer et al. (2000). Truncating the MLSVD results in an approximation, with a prescribed multilinear rank, to a tensor. We present a new error expression for an approximate Tucker decomposition with orthogonal factor matrices. From this expression, new insights are obtained which le...
متن کاملLeast Squares Parameter Estimation, Tiknonov Regularization, and Singular Value Decomposition
This handout addresses the errors in parameters estimated from fitting a function to data. Any sample of measured quantities will naturally contain some variability. Normal variations in data propagate through any equation or function applied to the data. In general we may be interested in combining the data in some mathematical way to compute another quantity. For example , we may be intereste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2988485